
Emotion detection

Nisheeth

Sources of affective responding

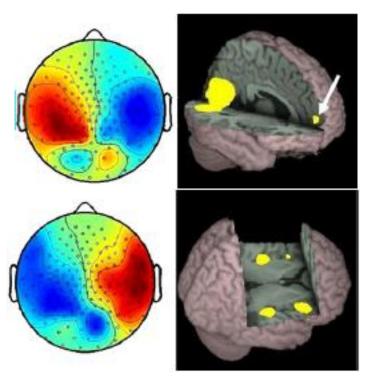
Emotions are universally recognized

But how?

Attention to the person or the emotion: Underlying activations inMEG(Bayle, Bostan & Taylor, 2007)

<u>Rationale</u>

Facial emotion processing is fast (100ms) and automatic and occurs regardless of whether you attend to the face or not.


Facial identity is also fast (but slower) and occurs in parallel according to most models

But there is some evidence from schizophrenia suggesting that the parallel (and therefore separate) brain regions interact

Methods and Results

Used MEG and happy/fear/neutral faces

Identity task - press button when 2 identities the same Emotion task - press button when 2 emotions the same

90ms orbito-frontal response to emotion regardless of attention

170ms right insula response when attending to emotion

Also 220ms activation increase for areas associated with identity processing

<u>Conclusions</u> Parallel processing verified

Impaired facial emotion recognition and reduced amygdalar volumein schizophrenia(Chihiro et al, 2007)

<u>Rationale</u>

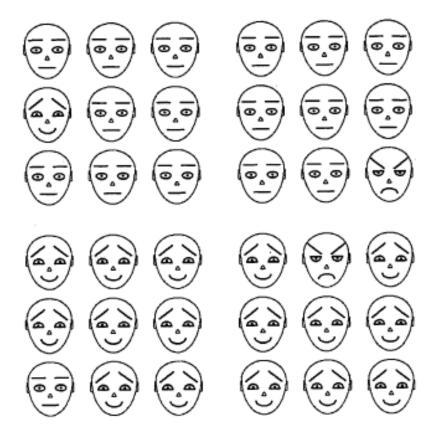
Amygdala volume known to be reduced in Schizophrenics

Emotion recognition known to be impaired in Schizophrenia

Direct link between the two not studied (properly) before

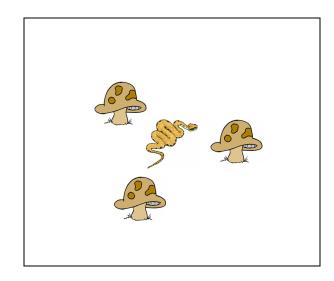
<u>Methods</u>

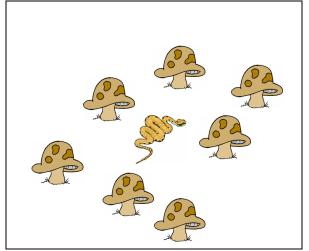
Facial emotion intensity recognition task


(1) The schizophrenia patients had smaller amygdalar volumes than the healthy controls;

(2) the patients showed impairment in recognizing facial emotions, specifically anger, surprise, disgust, and sadness;

(3) the left amygdala volume reduction in these patients was associated with impaired recognition of sadness in facial expressions.


Automaticity of emotion recognition


Angry faces are detected much more rapidly than faces depicting nonthreatening expressions

Ohman & Mineka, 2001

Attention is driven by fear

Summary

- Emotion detection is built deep into the human information processing machinery
- Very fast and sub-conscious detection of salient emotion cues

Al and emotion detection

- How can a computer detect emotion in a human's behavior?
- Approaches
 - Motor expression (today)
 - Facial detection
 - Speech-based detection
 - Physiological arousal (tomorrow)
 - Galvanic skin response
 - Electromyelograms

Facial Expression Recognition: supervised learning

 Young children learn from parents' facial expressions what is desirable and not

Facial expressions communicate

Babies (10 months) almost only smile in presence of caregiver

Babies look to caregiver and behave according to caregiver response when encountering novel object. E.g. a barking dog or a snake

This is known as social referencing and is also seen in chimpanzee societies

A similar process, observational fear, is seen in monkeys. Infant monkeys show fearful unconditioned response to mother's expression of fear when the mother could see a snake, but the infants could not. That is, infants showed a fear response to the mother's fear response. Facial expressions allow for rapid communication

They are produced when there is an emotional stimulus and an audience present

Our interpretation of another's emotion modulates our behaviour and vice versa

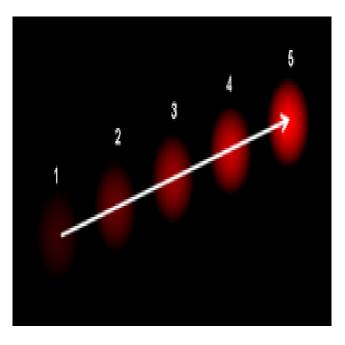
The ability to recognise emotion expressions appears very early

first few days (neonates)	can distinguish between expressions of happiness, sadness, and surprise
Four- to six-month	show preferences for facial expressions of happiness over neutral and angry expressions
seven months	can distinguish among expressions of fear, anger, surprise, happiness, and sadness

Classes of Expressions

- Joy
- Sadness
- Fear
- Disgust
- Anger
- Neutral

Automated Facial Expression Recognition

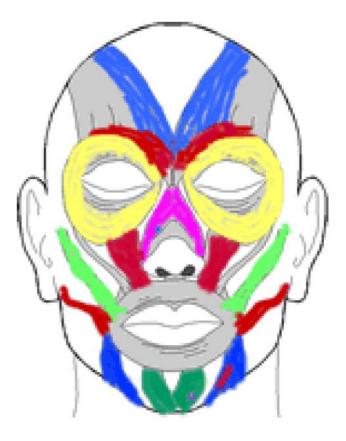

- Affective computing depends on reliably detecting human emotion
- Value proposition: natural ways of communication in person-to-machine interaction.
- Supervised learning via facial expressions.
- More natural (maybe) than keyboard or voice

General Machine Vision

- First step in the process is "vision".
- After the image is acquired, some preprocessing is done such as to reduce noise, improve contrast.
- Next features are extracted and areas of interest are "detected"
- Finally some high-level processing occurs.

Optical Flow

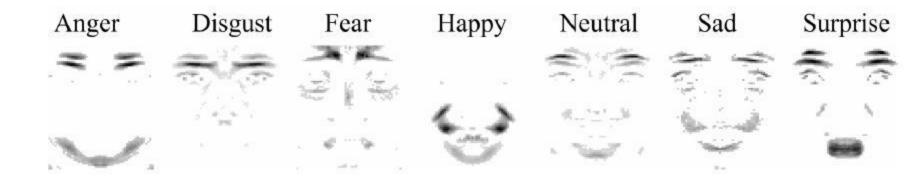
- Used to capture motion of objects due to relative motion between object and observer.
- Also used to derive "structure" of objects.
- Looks at intensity of "voxels" and tries to solve a set of differential equations.
- Voxels = Volume Pixels = Think Pixels in
 3d



Methods of Facial Reocognition

- Early methods used optical flow to capture movement of features.(Such as facial muscles)
- Modern methods are generally visual feature-based

Early emotion detection method

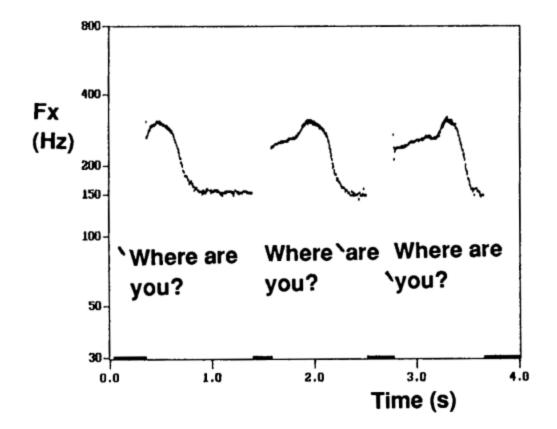

- EMFACS (Ekman & Friesen, 1973)
- Coded muscular features involved in different emotive expressions
- Tried to pick out the same features from videos
- Manual annotation

Weighted Saliency Maps

- Simple example of such a method. Uses pixel intensities of grayscale images.
- Calculates ratio of variance between classes and within a class.
- σk = VarB/VarW , k = 1,..., n.
- VarB=Sum of (ClassMean OverallMean)^{2,} for all classes and VarW=Sum of (f -MeanofClassof(f))^{2,} for all f. Here n is number of sample points.

Weighted Saliency Maps

- These ratios are then sorted in descending order.
- Above is an example for the top 500 features of each class for a particular sample

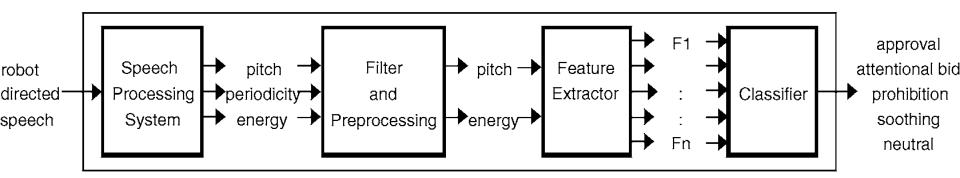

Speech Tone Recognition

- Why have humanoid robots ?
 - Enjoyable interaction
 - Doesn't require training
 - Easier to teach
- Acoustic patterns contain :
 - Speaker identity
 - Speech content
 - Speech tone

Abstraction of the problem

- Classify a given sentence to convey one of:
 - Approval : Good!
 - Prohibition : No!
 - Attention bidding : This looks interesting
 - Soothing : It'll be all right
 - Neutral : This is a book
- Approach: use Prosodic Contours

Using prosodic contours

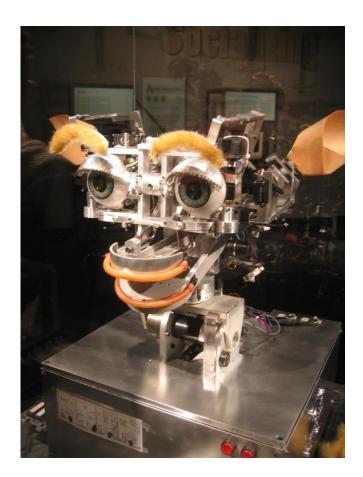

Have to normalize for pitch, length, and a bunch of other parameters

Using prosodic contours

- Intonation estimation
 - Glottal closure frequencies measured by laryngograph
 - Sampled at 1kHz
 - Can be approximated in practical applications
- Power curve estimates
 - Windowed sampling
 - Normalized to mean value of neutral style per speaker
- Voice activity estimation
 - Essentially just a noise filter
 - Trained to a threshold
- ML to the rescue

Courtesy [7]

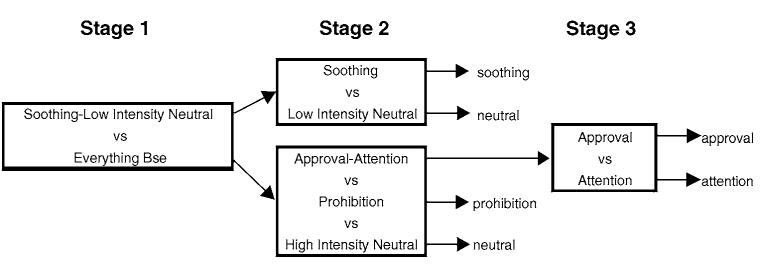
Algorithm : Classify emotional content in speech


- Processing : tag sample with pitch, energy, percentage periodicity.
- Filter out noise : very high pitches (non-uniform), very low pitches.
- Calculate features (mean, variance of pitch, energy, pitch range)
- Pass to classifier for result.

Results

					INPUT			
		Ang	Fea	Sur	Dis	Joy	Sad	Neu
OUTPUT	Ang	92	-	-	1	2	-	-
	Fea	-	94	9	-	-	-	-
	Sur	-	3	86	-	-	-	-
	Dis	-	-	-	80	-	4	3
б	Joy	2	-	-	-	88	-	1
	Sad	2	-	-	10	-	93	1
	Neu	1	-	-	6	7	-	92
Α	cc(%)	94.9	96.9	90.5	82.5	90.7	95.9	94.9

KISMET


- Adaptive
- Physical emotion display
- Emotion lookup table
- Realistic
- Designed in the early 90s

[A,V,S] Emotion Model

- [Arousal, Valence, Stance] :- A 3-tuple models an "emotion".
- Arousal:- Surprise at high arousal, fatigue at low arousal
- Valence:- Content at high valence, Unhappiness at low valence
- Stance:- Stern at closed stance, accepting at open stance

5-way classification in KISMET

- Stage 1 : Energy parameters are used to differentiate.
 (soothing, low-intensity neutral have low mean energy).
- Stage 2:
 - Using prosodic contours, soothing shows a smooth contour, frequency downsweep. Neutral is coarser and flatter.

Classification

- Purely rule-based
 - approval and attention both show high mean pitch, high pitch and energy variance
 - prohibition has low mean pitch but high energy variation
 - neutral shows low energy and pitch variation.
- Many rules really bulky and ad hoc
 - e.g. approval vs attention → both have high energy, and high pitch variation. But in approval, there is an exaggerated rise-fall pitch contour.

KISMET's response to emotion

- Has a synthetic nervous system (SNS) to help react to external stimulus.
- The 'somatic marker' process to tag incoming information with affective content.
 - Arousal : Level of emotional response
 - Valence : Is the stimulus+ve or -ve
 - Stance : How approachable is the percept?
- This information is passed to the 'emotion elicitor'.
- Emotional Elicitor : Each [A,V,S] input contributes to some emotion process. Eg, A large -ve valence might contribute to sad, anger, fear, distress emotions.

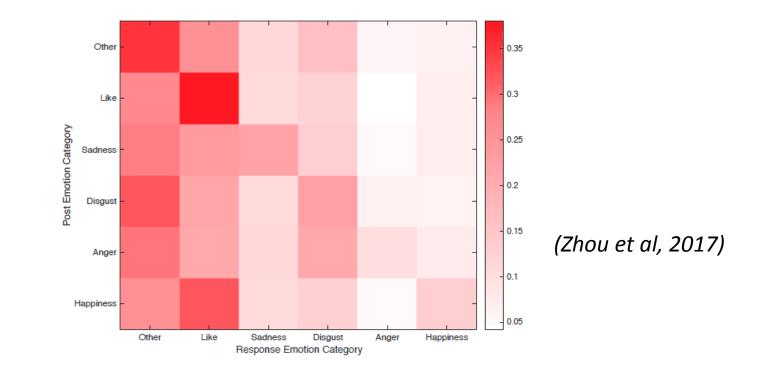
Kismet's Emotive Response Table

Prototype	Function of the	Emotion	Activation Conditions		
Ρισισιγμε	Associated Behavior	Associated	for Kismet		
Incorporation	Accept environmental	acceptance,	Acceptance of a desired		
	stimulus	calm	stimulus		
Rejection	Get rid of something	disgust	Attend to a salient but		
	harmful already accepted	—	<i>undesired</i> stimulus		
Protection	Avoid being destroyed	fear,	Appearance of a threatening,		
FIOLECTION	Avoid being destroyed	distress	overwhelming stimulus		
Deprivation	React against important	sorrow	Loss of a desired stimulus		
	loss	3011070			
Orientation	React to a new or strange	interest	Appearance of new or		
Onentation	object	Interest	<i>salient</i> stimulus		
Exploration	Explore environment	boredom	Need of a desired yet		
скрютацон			absent stimulus		
Reward	Reinforce beneficial	joy	Success in achieving goal		
	behavior	JOY	of active behavior		
Destruction	Remove barrier to achieve	anger,	Delay, difficulty in achieving		
	some need	frustration	goal of active behavior		
Alert	Startle Response	surprise	Sudden, unexpected stimulus		
	otartie Nesponse	saihuse	oddach, drexpected stiridids		

Response calculation

- The winning emotion process affects the response if its value is above some threshold.
- Two thresholds, one for behavioural response, the other for response through expression (the latter is lower). This indicates that expression leads behavioural response.
 - On praise, first comes interest, and then physical alignment.

Response desiderata

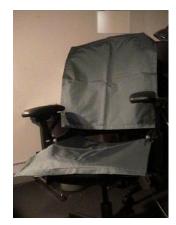

- Aesthetics : Appearance should affect nature of human communication with it.
- Real Time Perfomance : Long delays are not acceptable.
- Voice : Humans should be able to use their natural voice for training. It should be able to recognize a vocalization as having affective content when the intent of the sentence is to approve/prohibit, etc.

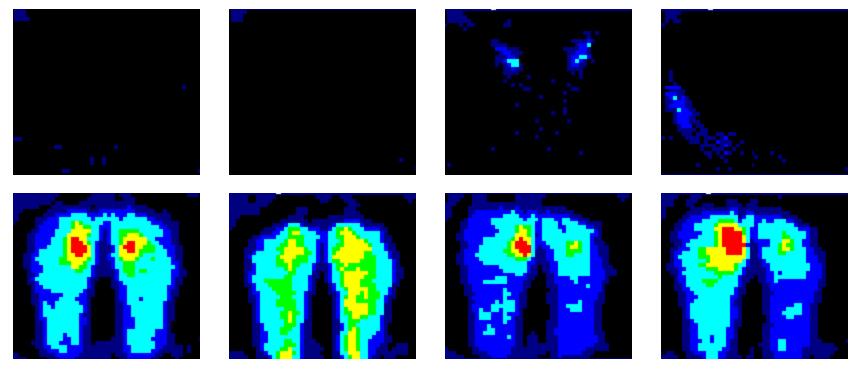
Response desiderata

- Unacceptable vs Acceptable misclassification: Shouldn't judge prohibition to be approval, but to judge it as neutral is an acceptable error.
- Expressive Feedback : Respond to emotion to let the person know it has understood.
- Speaker Dependence vs Independence: Former for personalized bots, latter for those that need to interact with many people.

Response specifications

- Empirical statement-response data from NLPCC 2014 dataset
 - 23105 emotion annotated sentences from Weibo

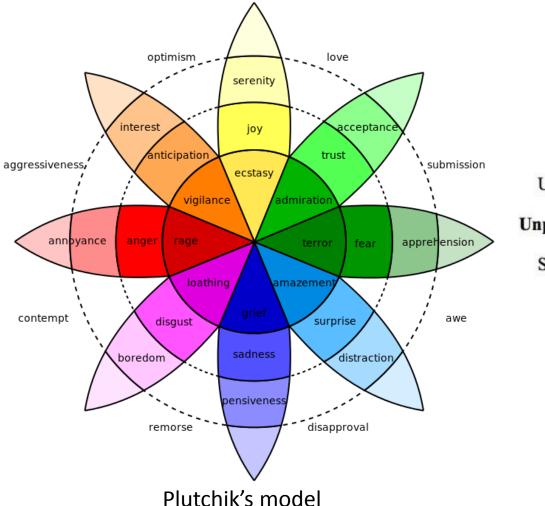



Dealing with embodiment

DETECTING EMOTIONS FROM THE BODY

Posterior inference (Mota & Picard, 2003)

Emotion detection using pressure sensors


What can the sensor chair contribute toward inferring the student's state: *Bored vs. interested?*

Results (on children not in training data, Mota and Picard, 2003): 9-state Posture Recognition: 89-97% accurate High Interest, Low interest, Taking a Break: 69-83% accurate

Models of emotion

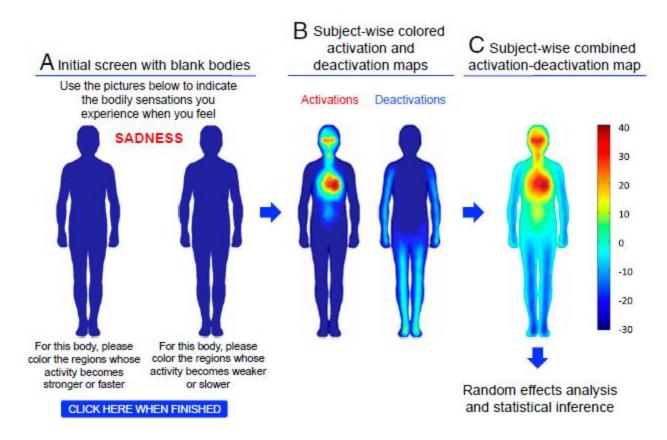
Tense Nervous Stressed Upset Activation

alert excited elated

happy

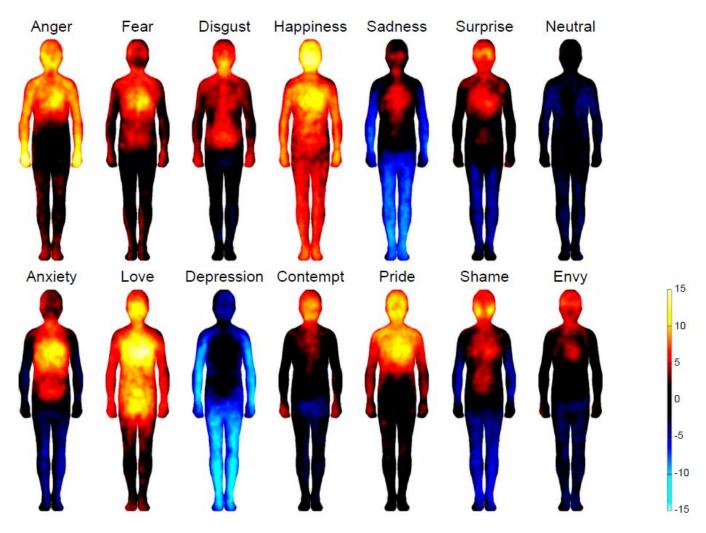
Unpleasant

Sad Depressed Bored Fatigued Pleasant

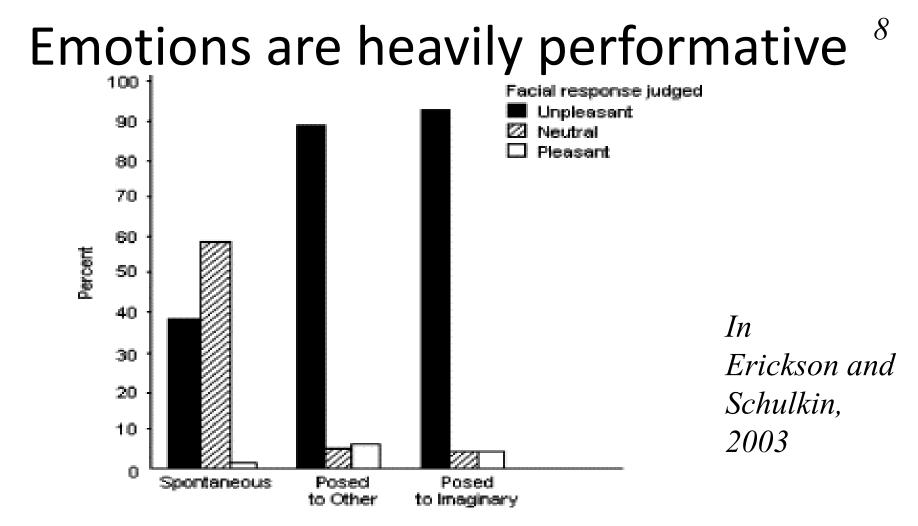

contented serene relaxed calm

Deactivation

Theories of emotion


- James-Lange → Stimulus causes physiological response, perception of bodily change is emotion
- Cannon-Baird → Non-physiological independent basis of emotion
- Schacter → Physiological response directs cognitive situational appraisal, ends up being confounded with emotional state

Are emotions situated in the body?


(Nummenmanaa et al, PNAS 2013)

Bodily basis of emotions well-founded

(Nummenmanaa et al, PNAS 2013)

Patterns consistent across Finns and Taiwanese

Percentage of facial responses to unpleasant odour classified as unpleasant, neutral, or pleasant in a spontaneous condition, a posed to real person condition, and a posed to imaginary audience condition

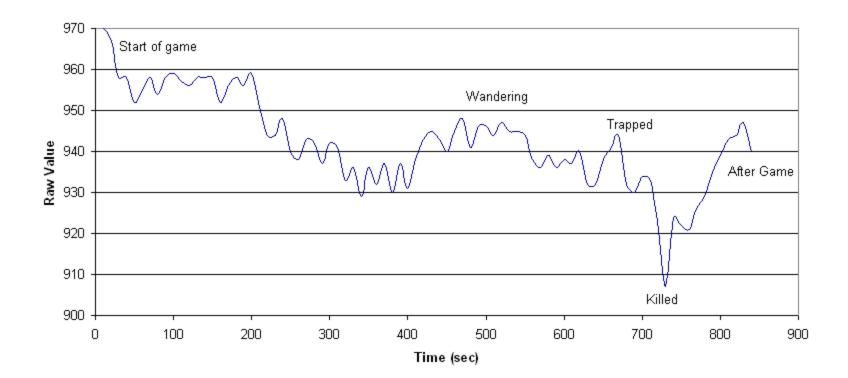
The problem

- Facial and speech-based models can detect expressed emotion
- Expressed emotion is heavily performative
- Felt emotion is heavily embodied
- How to
 - Measure felt emotion
 - Correlate with expressed emotion

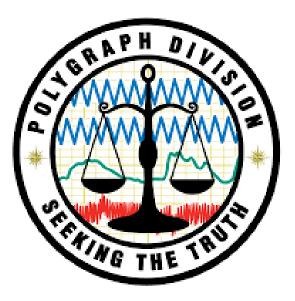
Possible solutions

- Psychological surveys
- Physiological monitoring
 - Galvanic skin response
 - Blood volume pulse

Surveys

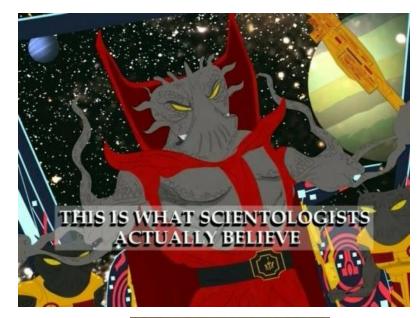

- Ask detailed questions
 - Ask same questions multiple ways
 - Use correlations to judge response authenticity

– PANAS most common

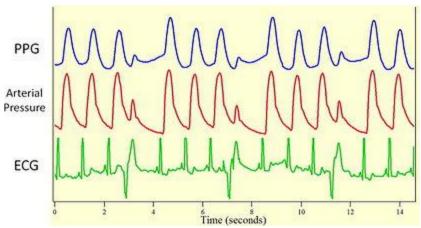

1	2	3	4		5
very slightly a little		moderately	quite a bit		extremely
or not at all					
cheerful		sad	active	angry at self	
disgusted		_ calm	guilty	enthusiastic	
attentive		_afraid	joyful	downhearted	
bashful		_ tired	nervous	sheepish	
sluggish		_amazed	lonely	distressed	
daring		_shaky	sleepy	blameworthy	
surprised		_ happy	excited	determined	
strong		timid	hostile	frightened	
scornful		alone	proud	astonished	
relaxed		alert	jittery	interested	
irritable		_upset	_ lively	loathing	
delighted		_angry	ashamed	confident	
inspired		bold	at ease	energetic	
fearless		_ blue	scared	concentrating	
disgusted		shy	drowsy	dissatisfied with sel	

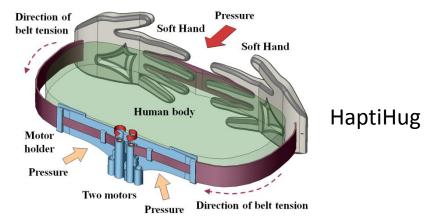
GSR

- Ancient technique
- Measures skin conductance
- Function of sweat gland activity
- Can measured generalized arousal



Existing uses


Picard Lab, MIT


Photoplethysmography

- Blood volume pulse = measure of how much blood is flowing through an organ
- Measured using infra-red light reflection
- Can measure easily at fingers, but also at other body sites
- Similar uses as GSR

Possible applications

- E-learning
- Driver/pilot monitoring
- Neuromarketing
- Athletic performance monitoring
- Quantified self applications
- Digital co-presence

Summary: emotion detection

- Machine learning methods are hands off
 - Scale well, give good accuracy metrics
 - Not ecologically grounded
- Biophysical methods are intrusive
 - Scale poorly, give good accuracy metrics but poor resolution of emotion space
 - Ecologically well-grounded
- Surveys offer great resolution of emotion space
 - Scale terribly or not at all, very resource inefficient
- Applications
 - Context-sensitivity in human-computer interaction
 - Monitoring human performance/engagement on tasks
 - Remote projection of affect